Read Anywhere and on Any Device!

Subscribe to Read | $0.00

Join today and start reading your favorite books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications

Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications

Nassim Nicholas Taleb
4.3/5 ( ratings)
The book investigates the misapplication of conventional statistical techniques to fat tailed distributions and looks for remedies, when possible. Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress." Traditional asymptotics deal mainly with either n=1 or n=∞, and the real world is in between, under the "laws of the medium numbers"-which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: - The sample mean is rarely in line with the population mean, with effect on "na�ve empiricism," but can be sometimes be estimated via parametric methods. - The "empirical distribution" is rarely empirical. - Parameter uncertainty has compounding effects on statistical metrics. - Dimension reduction fails. - Inequality estimators are not additive and produce wrong results. - Many "biases" found in psychology become entirely rational under more sophisticated probability distributions. - Most of the failures of financial economics, econometrics, and behavioral economics can be attributed to using the wrong distributions. This book, the first volume of the Technical Incerto, weaves a narrative around published journal articles.
Pages
446
Format
Hardcover
Publisher
STEM Academic Press
Release
June 30, 2020
ISBN
1544508050
ISBN 13
9781544508054

Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications

Nassim Nicholas Taleb
4.3/5 ( ratings)
The book investigates the misapplication of conventional statistical techniques to fat tailed distributions and looks for remedies, when possible. Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress." Traditional asymptotics deal mainly with either n=1 or n=∞, and the real world is in between, under the "laws of the medium numbers"-which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: - The sample mean is rarely in line with the population mean, with effect on "na�ve empiricism," but can be sometimes be estimated via parametric methods. - The "empirical distribution" is rarely empirical. - Parameter uncertainty has compounding effects on statistical metrics. - Dimension reduction fails. - Inequality estimators are not additive and produce wrong results. - Many "biases" found in psychology become entirely rational under more sophisticated probability distributions. - Most of the failures of financial economics, econometrics, and behavioral economics can be attributed to using the wrong distributions. This book, the first volume of the Technical Incerto, weaves a narrative around published journal articles.
Pages
446
Format
Hardcover
Publisher
STEM Academic Press
Release
June 30, 2020
ISBN
1544508050
ISBN 13
9781544508054

Rate this book!

Write a review?

loader